Flexible power and control cables

Flexible power cables Flexible control cables

The Cavotec Group

Cavotec is the name of a group of companies specialized in power supply technology for cranes and other industrial equipment. It is formed by 5 manufacturing "Centres of Excellence" located in Canada, France, Germany, Italy and Sweden and by 5 local manufacturing units located in Australia, China, Germany, Sweden and USA.

For distribution of their products and support to customers Cavotec has 22 sales companies which, together with a network of Distributors, serve more than 30 countries on five continents. Each manufacturing company, no matter where it is located, aims at being a market leader in its field by providing innovative and reliable products to Group customers. Although they manufacture different products in different countries, they are globally supported and coordinated by the Cavotec Group in their product development and marketing activities.

Each sales company, and each distributor, has a policy aiming at better serving its local market with

the full support of the Cavotec Group.

Our aim is to be local everywhere

Great emphasis is put in providing the highest quality not only in the selected products, but also in service and backing to their customers. Our philosophy in fact is to be local everywhere.

Our fields of activity are

Mining, tunnelling

Steel Mills

Airports

Ports, **Terminals**

Robots. Automation

Offshore

Constructions

Our competence is power supply technology

To be able to offer a comprehensive selection of high quality cables to our customers, the Cavotec Group decided to select specialised manufacturing partners sharing our philosophy concerning the quality level and the service to the customer.

Concerning flexible cables our Group cooperates with partners like Amercable, Baude, Gore, Palazzo, Pirelli and Nexans.

The range of cables sold and serviced includes control cables, power cables, fiber optic cables and Kevlar reinforced cables for high stress applications.

Table of contents

How to choose the right cable for the job	4
Low Voltage	
Panzerflex® 1kV low voltage power cable	11
Panzerflex® 1kV low voltage control cable	12
Panzerflex® VS	13
Panzerlite®	14
Cordaflex [™] (SMK) - reinforced	15
Basketheavyflex®	16
CraneMAX control cable	17
Goreflex	18
Semoflex	19
Buflex-TP	20
H07 RN-F	21
Medium Voltage	
Panzerflex®-L	23
Panzerflex®-L FO	24
Panzerflat [®]	25
Protolon™ (SMK)	26
Protolon™ (SMK) LWL	27
CraneMAX power cable	28
CraneMAX power cable-FO	29
Comparison between metric cross-section and AWG numbers	31

How to choose the right cable for the job.

A large, high speed Cavotec Specimas cable reel mounted on a coil handler running at 180 m/minute.

To illustrate possible questions that arise from using cables in different types of applications we have included below a case study from Palazzo Pirelli. This study is based completely on their technical calculations and experience and is not automatically applicable to other types or brands of cable. In order to be sure of the latest information and any possible changes always contact your cable manufacturer.

Bending is not the only stress present with cables used for heavy duty applications. Mobile cables are subject to other stresses and strains (tensile, twisting etc.) resulting from forced guidance of the cable during the winding and unwinding phases. Consequently the correct choice is vital to ensure a long life of the cable.

Naturally other factors of primary importance must also be taken into consideration. These are:

- Minimum bending radius
- Tensile stress
- Operating speed & acceleration
- Installation height & length
- Ambient Temperature

The following paragraphs provide a detailed examination of these factors for accurate assessment of cable requirements.

Table 1: Palazzo type selection

TYPE OF CABLE		TYPE OF CABLE APPLICATION								
	Festoons		Cable	e winding reels	i	Cable tender systems	Guide pulley system	Pendant push buttons	Cable chains	Baskets
		Cable lai	d on ground	with guide	Vertical cable	← →	*	00000		
Operating speed (m/min.max)*	180	180	120	120	120	240	120	_	120	120
PANZERFLEX® PANZERFLEX®- FO (minimum temp 20°C)					×	×	×	×	•	×
PANZERFLEX®- K (minimum temp 40°C)					×	×	×	×		×
PANZERFLEX®- VS (minimum temp 20°C)	×								×	×
BASKETHEAVYFLEX® (minimum temp 20°C)	×	×	×	×	×	×	×	×	×	

Bending radius and overall diameters

Precise calculation of the bending radius is a determining factor for cable reliability. A decrease in minimum bending radius has a major effect on the life of a cable because it causes stretching and internal distortions. Another important factor is the frequency of the cable movements. If movement is slow and infrequent a tighter bending radius can be considered. Special attention should be taken for installations with pulleys or guide-rollers.

Special attention should also be paid to installations where flexing and torsion is present due to the reels being parallel to the line of travel of the machine (see table 2).

Tensile strength

The maximum admissible continuous operating load is calculated by taking the sum of the cross sections of the power conductors (phases + earth of equal cross section) in the cable*. Greater loads will result in permanent elongation of the conductors, which would shorten the life of the cable considerably. For occasional or very infrequent stresses the calculated limit can be exceeded slightly. For control cables, where the resistant

cross section consists of numerous small conductors, special types of cables are available. In special cases, where the pulling strength exceeds the resistance of the conductors, cables are used fitted with strainers or other means such as Kevlar reinforcement.

Operating speed

All cables in this catalogue have been designed, manufactured and tested for the operating speeds commonly in use today. Of course these speeds are only possible if the recommendations made concerning the choice of cable have been observed. Please note that high acceleration in combination with high operating speeds should be taken into account when calculating the tensile stress in the cable.

Coiling on cable reels

Monospiral reels

When using this type of reel the natural tendency of the cable is utilised. Alternatively it is also often possible to position the reel in order to eliminate the use of intermediate pulleys and any changes of direction. This increases the life of the cable and the operating speeds considerably.

Multi-spiral and multi-layer reels

These types of reels are normally used in cases of long cable length and large diameter cables. With this type of installation, attention must be paid to minimising the use of intermediate pulleys. The current capacity must also be carefully calculated using correction factors for layers and winding.

Spreader cables

Some cables have specially designed to be collected in baskets. With these types of applications a correct design is not only important for good cable treatment but also to avoid operating malfunctions. High stress applications will typically involve long vertical lengths, high speeds combined with lateral movement and a presence of strong winds (typical port conditions). In these cases attention should be paid to ensure that the coiling diameter is no less than 1.5 mtr. and that a guide cone is located in the basket for even coiling of the cable. The shape of the basket and the size and shape of the opening are also important factors. A conical opening at a minimum height of 2 mtr. is recommended. Periodic lubrication of the surface of the cable is necessary to facilitate entry into the basket. Lubricating products that do not cause excessive accumulation of dirt should be used (figure 1 - page 6).

Table 2: Minimum bending radius

OPERATING VOLTAGE		TYPE OF APPLICATION										
Overall diameter of cable DE	Fixed installation	Anchoring reel	Festoons	Cable reels		Cable reels		Baskets	Cable chains	Cable tender systems	Guide pulle	ey systems
				20000				©22222222		***		
Voltage ≤ 1000 V												
DE < 8.0 mm	3 x DE	3 x	DE	5 x	DE	_	4 x	DE	7,5 >	(DE		
DE < 12.0 mm	3 x DE	4 x	DE	5 x	DE	— 4 x DE		7,5 >	(DE			
DE ≤ 20.0 mm	4 x DE	5 x	DE	5 x DE		_	5 x DE		7,5 x DE			
DE > 20.0 mm	4 x DE	5 x	DE	6 x DE		15 x DE	5 x DE		7,5 x DE			
Voltage > 1000 V	6 x DE	10	x DE	12 x DE		_	10 x DE		15 x	DE		

^{*} multiplied by the maximum allowed tensile strength factor

Other systems of cable movement

The systems most frequently employed are perhaps cable tender systems, pulley systems and cable chains. The first two systems involve high tensile stress whereas the third on a whole does not. Particular attention must be paid to the minimum bending radius and to the distribution of loads between the cables and cable tenders. Cables with a greater cross section should bear the loads and not the control cables that may be present.

Guide pulley and anchoring devices.

When designing these components, care must be taken to observe the recommended minimum bending radius and also the following factors:

Intermediate sheaves used for long cable lengths must be designed with a 'flat bottom profile' in order to avoid torsion. Small, light-weight rollers are preferred to sheave pulleys or wheels. With twin directional cable guides it is preferable to use light-weight, low friction rollers with a rounded bottom profile, as these types of rollers guide the cable in the centre without developing torsion stresses. If possible reduce the number intermediate pulleys and keep changes of direction to a minimum. Where possible rollers instead of pulleys should be used as these have considerably less contact area with the cable. Should the route of the cable require more than one change of direction, the distance between two sheaves or rollers must be greater than 25 times the overall diameter of the cable.

The anchoring systems must be designed to distribute the tensile stress over a wide area of the outer cable sheath. This is in order to prevent localised faults or damage. It is preferable to make the connections at both ends of the installation by using the same method normally adopted for installations with a central feeding point. Both the reel and the feeding point must have a few 'dead' turns of cable before the cable joint. Mobile anchoring points usually consist of ordinary terminals or 'cable grips'. In these cases it is recommended that the tensile load is distributed over a length of cable equal to 20-25 times the overall diameter of the cable. It is also recommendable that an additional loop of cable be left before entry into the terminal box to allow movement. In any case it is absolutely essential for the design of the guide and pulley system to provide adequate protection and reduce effect of slacks and jerks during operation. The overall lifetime and reliability of the cable depends on these conditions being met.

Current carrying capacities for non-continuous operation

In some cases electrical operation is not continuous. In these cases it is therefore advisable to check the values of the operating times so as to determine if the cross section of the cable can be reduced. A typical example of intermittent operating with hoisting equipment consists of repeated cycles where, for example, an operating period of 10 minutes of full load is followed by a longer period without load. These 10 minutes, taken as a percentage of the total duration (DT) of the cycle, provide the load factor. Load factor $ED\% = (10/DT min) \times 100$. In this case the current carrying capacity (as calculated in the preceding paragraph) can be increased using the factors given in table 4. For further information and advice please consult our technical department.

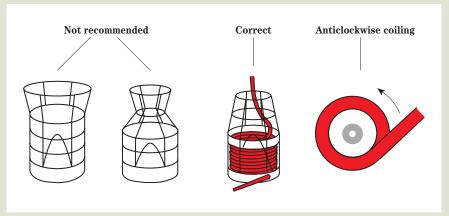


Figure 1. Shape of the basket and direction of coiling.

 Table 3: Current carrying capacities for continuous operation

Type of cable		F	'ANZERFLI FLEXIFLA 'ANZERFLI KETHEAV'	∖T AT®		PANZERFLEX®-PANZERFLAT®						
Type of laying			L cable in		•			9	1 c	able laid (on the gr	ound
Cross section				(Operating v							Operating voltage Above 10 kV
mm²			A						Α			A
1,5			24						23			
2,5			24 32						30			
<u>2,5</u> 4			32 43						41			
6			5 6						53			_
10			78			74				_		
16		1	.04			99				105		
25		138							131			139
35			.71			162				172		
50			13						202			215
70			63						250			265
95			17						301			319
120			70						352			371
150 185			25						404			428
240			85 70						461 517			488
sulation: EPR - Conductor Current carrying (For ambient temperatures other)	capacity c			-	re: 30°C							
Ambient temperature (°C)		25	35	40	45	50	55	60	65	70	75	
Correction factor		1,05	0,95	0,89	0,84	0,77	0,73	1 0,63	3 0,55	0,45	0,32	
Reel type		Multi-	spiral ree	ls						Mor	nospiral r	reels
Number of layers on reel	1	2	3		4				Vario			Various
Correction factor	0,80	0,61		,49	0,42				0,8			0,5
		Rou	nd cables	5					Roui	nd cables		Flat cables
Type of cable												
Type of cable For multi-core cables												
**		5	7	10	14	19		24	40			

 Table 4: Correction factors for intermittent operation

Cross section of cable mm ²				2,5	4	6	10	16	25	35	50	70	95	120	150	185	240	300
С	ycle duration	Load factor-ED%					Cor	rection	factors									
Load min.	Total DT min.																	
10	17	60%	1,00	1,00	1,00	1,00	1,03	1,07	1,10	1,13	1,16	1,18	1,20	1,21	1,22	1,23	1,24	1,25
10	25	40%	1,00	1,00	1,03	1,04	1,09	1,16	1,23	1,28	1,34	1,38	1,42	1,44	1,46	1,48	1,49	1,50
10	40	25%	1,00	1,02	1,05	1,13	1,21	1,34	1,45	1,53	1,62	1,69	1,74	1,78	1,81	1,82	1,85	1,87
10	50	20%	1,00	1,04	1,11	1,18	1,31	1,45	1,59	1,69	1,79	1,87	1,93	1,97	2,01	2,04	2,10	2,15
10	67	15%	1,00	1,08	1,19	1,27	1,44	1,62	1,79	1,90	2,03	2,13	2,21	2,26	2,30	2,32	2,36	2,39

Voltage drop

The voltage drop should not only be checked for low voltage but also for medium voltage applications. The value is calculated by multiplying the factors K (mV/Am) given in table 5 with the current capacity I (A) of the cable and by the length of the connection L (km). This calculation is valid with sufficient approximation for all voltages where:

conductor temperature = 80C; $\cos \varphi$ 0,8; frequency = 50 Hz. Voltage drop (V) = I(A) x L (km) x K(mV/Am).

The factors have been calculated using the formula:

 $K(mV/Am) = 1,73 \text{ x } (R \cos \phi \text{ X sen } \phi)$ where: R= Resistance of the conductor (Ω/km) at 50 Hz.

X = cable reactance (Ω /km) at 50Hz. Values for electrical resistance R (80°C) and for reactance X (calculated for

round cables, three phase cores plus earth, but it can also be applied to flat cables) are also given in table 5. It should be noted that for the conductor temperatures of 90°C the resistance R must be multiplied by 1,03 while for a frequency of 60 Hz the resistance X must be multiplied by 1,2 and the value for K (mV/Am) recalculated.

Table 5: Factors for calculation of voltage drop

Nominal cross section of cable	Operating electrical resistance (R)		Reactand	` '	or three core+ear ating voltage of:	th cables		Voltage drop factor k
	at 80°C, A.C. 50 Hz	≤ 1 kV	3 kV	6 kV	10 kV	15 kV	20 kV	$(\cos \varphi = 0.8)$
mm ²	Ω / km	Ω / km	Ω / km	Ω / km	Ω / km	Ω / km	Ω / km	mV / Am
1,5	16,95	0,107						23,5
2,5	10,15	0,101						14,2
4	6,29	0,097						8,80
6	4,20	0,091						5,93
10	2,41	0,087	0,098					3,45
16	1,54	0,083	0,096	0,109	0,121			2,24
25	0,986	0,082	0,091	0,104	0,114	0,127		1,46
35	0,700	0,079	0,087	0,099	0,108	0,121	0,131	1,06
50	0,490	0,078	0,083	0,094	0,103	0,114	0,123	0,77
70	0,345	0,076	0,080	0,090	0,098	0,108	0,113	0,57
95	0,260	0,075	0,079	0,088	0,094	0,104		0,45
120	0,205	0,074	0,077	0,085	0,091			0,36
150	0,163	0,074	0,076	0,083	0,089			0,30
185	0,134	0,073	0,074	0,081				0,26
240	0,101	0,072	0,074					0,22

Table 6: Short circuit current

Nominal cross section of cable	1 second THERMAL LIMIT for all voltage	for DYNAMIC LIMIT for three core cables operating voltage of:							
		≤ 1 KV	3 KV	6 KV	10 KV	15 KV	20 KV		
(mm²)	kA		-	(Indicativ	ve value) kA				
1,5	0,2								
2,5	0,32								
4	0,51								
6	0,77								
10	1,29								
16	2,06	30	40	45	50	55			
25	3,22	35	43	50	55	60			
35	4,50	40	48	53	60	65	75		
50	6,43	45	50	58	63	70	80		
70	9,00	50	55	63	68	75	83		
95	12,2	55	60	70	75	80			
120	15,4	60	65	72	78				
150	19,3	65	68	75	80				
185	23,8	70	72	80	84				
240	31,0	80							

Thermal limit in case of short circuit

In accordance with VDE Standard 0250 c. 8/75 the admissible thermal limits for short circuit current in heavy cables must be calculated using the following reference values:

- Initial temperature: 80°C (cable under full load)
- final short circuit temperature: 200°C

The short circuit currents (thermal limit) given in table 6 have been calculated using these reference values and are valid for a base time of 1 second. For other time periods, taking into account the protection characteristics of the machine, the value in the table must be divided by the square root of the effective time

(in seconds). For different initial and final temperatures (e.g. with 90°C and 250°C admissible according to the EPR norms) the short circuit current thermal limit can be calculated using the following formula:

$$Icc (Ka) = \underbrace{kcc \times cross \ section \ (mm^2)}_{\sqrt{t. \ (sec.)}}$$

Where the coefficient kcc assumes the following values:

Kcc coefficient table

Final S.C. temperature °C		Initial S.C. temperature (= of the conductor under normal operating condictions)								
	30°C	40°C	50°C	60°C	70°C	80°C	90°C			
160°	143	136	129	122	115	107	100			
200°	159	153	147	141	135	128	122			
250°	176	170	165	159	154	148	143			

Dynamic limit in case of short circuit

The electro-dynamic forces generated during short circuit tend to separate single core cables or the cores of three/four cables forcibly. To counteract these forces in single core cables, attention must be paid to the dimensions and spacing of cable brackets and supports. For multi-core cables, used more frequently for heavy duty applications, the cable itself ensures this.

Handling of the cable

Storing and handling the cables on their original drums is recommended in order to prevent any defects. If possible the drums should not be rolled; either on level or uneven ground. If the type of installation and working conditions allow, it is good to roll out the cable along the line of movement of the machine before installation. By doing this you can check if there are any torsions or twist in the entire length of the cable. Appropriate equipment (rollers or pulley devices) should be used taking into account the slight tendency of round cables (especially multi-core ones) to spiral. During this stage any longitudinal twists should be taken out using appropriate actions in order to make sure the cable rewinds correctly on the reel or is properly festooned. The longitudinal reference markings on the cable make this operation easier.

Transfer onto reels

If working conditions do not allow the previous described method, the cable should be transferred directly from the original drum to the cable reel. Undesired twists and torsions that have a negative effect on the cable should be eliminated during this operation. The transfer must be direct with no intermediate guides (rollers, pulleys, twin-directional rollers etc.) and with no changes of direction or inversions of the original direction of winding on the delivery drum (see figure 3). Most cables are manufactured with right-hand lay-up of the conductors (both for power and control cables). It is important to remember therefore that when winding onto multi-spiral reels the first turn must be with the cable against the right

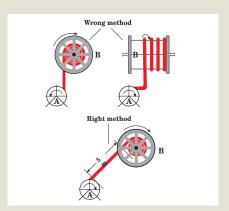
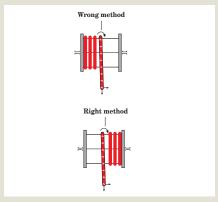



Figure 3. Transfer of cable from original delivery drum A to the cable winding reel B.

flange of the reel. This will have the effect of exploiting the natural tendency of a cable under traction to move to the right and will keep subsequent turns close together (see figure 4).

Installation in spreader-baskets

With cables designed for installing in baskets, the right hand lay-up of the cores means that cables must be introduced into the bottom of the basket, coiling in an anticlockwise direction, unwinding from the outer layer of the original drum. In order to facilitate basket coiling and uncoiling operations, the outer surface of the cable should be periodically lubricated with a suitable product (such as silicone grease) designed to prevent any adhesion of dirt, dust or other matter.

 $Figure\ 4.\ Winding\ of\ cable\ onto\ multi-spire\ reel.$

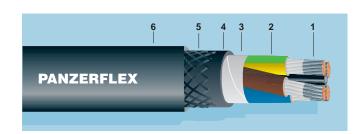
Panzerflex® 1kV; low voltage power cable

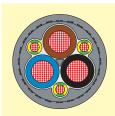
Ratings and Specifications

VDE 0250, Part 814

Rated and test voltages

Rated voltage Uo/U 0,6/1 kV A.C. 0,7/1,2 kV A.C. Max voltage Um Max voltage Um 0,9/1,8 kV D.C. Test voltage kV A.C. 2.5


Temperature ratings


- + 90°C Maximum conductor temperature
- 20°C Minimum conductor temperature

Applications

Panzerflex® special flexible heavy duty power cables have been developed for use on moving installations where there are high torsional and tensile stresses, ambient conditions are harsh or there is danger of abrasion and crushing.

Typical applications for Panzerflex® are mobile installations on all types of harbour cranes, container cranes, shipunloaders, mobile harbour cranes, deck cranes, stacker & reclaimers, trippers, mining & tunnelling equipment and mobile generator sets.

- 2 EPR rubber compound insulation
- 4 Polychloroprene based compound inner sheath
- Antitwisting protection of synthetic yarns
- Black polychloroprene based compound outer sheath

	PANZERFLEX® 1 kV							
		nber of		per of				
		e cores	cable					
	3	+ 3	4	4				
Nominal	Max.	Net	Max.	Net	Max. Contin.			
cross	overall	weight	overall	weight	Safe Reeling			
section	diam.		diam.		Tension			
mm ²	mm	kg/km	mm	kg/km	N			
1,5	-	-	14,3	280	120			
2,5	-	-	17,2	410	200			
4	-	-	20,0	550	320			
6	-	-	21,5	680	480			
10	-	-	25,5	1030	800			
16	-	-	30,0	1470	1280			
25	-	-	35,0	2130	2000			
35	-	-	39,0	2750	2800			
50 (10)*	44,5	3310	44,5	3700	4000			
70 (16)*	49,3	4340	49,0	4840	5600			
95 (16)*	52,3	5500	56,5	6470	7600			

*	The cross	section	indicated	in the	brackets	is th	nat of	each	minor	conductor	of 3	+ 3	
	1110 01000	3000001	maioatoa	III UIC	DIGUNCIS	IO U	iut oi	CUOII	111111101	COTTAGCTOT	01 0		

	PANZERFLEX® 1 kV								
		nber of	Num						
	cabl	e cores	cable	cores					
	3	+ 3	4	4					
Nominal	Max.	Net	Max.	Net	Max. Contin.				
cross	overall	weight	overall	weight	Safe Reeling				
section	diam.		diam.		Tension				
mm ²	mm	kg/km	mm	kg/km	N				
120 (25)*	59,4	6970	63,2	8280	9600				
150 (25)*	61,5	8130	68,7	9950	12000				
185 (35)*	67,2	9820	74,9	11800	14800				
240 (50)*	76,1	12680	-	-	-				
25 (2,5)*	-	-	-	-	-				
35 (2,5)*	_	-	_	-	-				
35 (2,5)*	_	-	-	_	-				

Panzerflex® 1kV; low voltage control cable

Ratings and Specifications

VDE 0250, Part 814

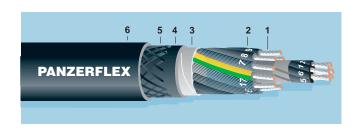
Rated and test voltages

Rated voltage Uo/o 0,6/1 kV A.C.

Max voltage Um 0,7/1,2 kV A.C.

Max voltage Um 0,9/1,8 kV D.C.

Test voltage 2,5 kV A.C.


Temperature ratings

+ 90°C Maximum conductor temperature

– 20°C Minimum ambient temperature during work

Applications

Panzerflex® special, flexible control cables have been developed for use on moving installations where there are high torsional and tensile stresses and ambient conditions are harsh. Panzerflex® low voltage control cable has been especially designed for vertical reeling applications with high lifting heights. Typical applications for Panzerflex® control cables are mobile installations on all types of harbour cranes, container cranes, ship-unloaders, stacker & reclaimers, trippers, mobile generator sets and mining & tunnelling equipment, while Panzerflex® is especially suited for use on vertical reeling installations on mobile harbour cranes, ship-to-shore container cranes and large bridge cranes.

Construction & Characteristics PANZERFLEX® 1kV (control)

- 1 Flexible tinned stranded copper conductor
- 2 EPR rubber compound insulation
- **3** Tape
- 4 Polychloroprene based compound inner sheath
- **5** Antitwisting protection of synthetic yarns
- 6 Black polychloroprene based compound outer sheath

PANZERFLEX® 1 kV									
Nominal	Max.	Net	Max. Contin.						
cross section	overall diam.	weight S	Safe Reeling Tension						
n x mm²	mm	kg/km	N						
7 x 1,5	19,1	490	158						
12 x 1,5	22,3	680	270						
18 x 1,5	25,3	890	405						
24 x 1,5	29,4	1140	540						
30 x 1,5	31,5	1360	675						
36 x 1,5	33,5	1540	810						
7 x 2,5	21,2	660	263						
12 x 2,5	24,8	910	450						
18 x 2,5	30,2	1270	675						
24 x 2,5	33,6	1680	900						
30 x 2,5	35,4	1890	1125						
36 x 2,5	38,4	2250	1350						
7 x 4	24,2	890	420						
12 x 4	28,6	1280	720						
18 x 4	34,3	1840	1080						
19 x 2,5+5 x 1 (C)	34,0	1650	713						
19 x 2,5+5 x 1,5 (C)	34,0	1680	713						
25 x 2,5+5 x 1,5 (C)	36,0	1890	938						

Panzerflex® VS; low voltage control cable vertical application

Ratings and Specifications

VDE 0250, Part 814

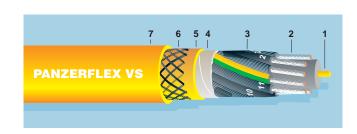
Rated and test voltages

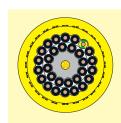
Rated voltage Uo/U 0,6/1 kV A.C.

Max voltage Um 1,2 kV A.C.

Max voltage Um 1,8 kV D.C.

Test voltage 2,5 kV A.C.


Temperature ratings


+ 90°C Maximum conductor temperature

- 20°C Minimum ambient temperature during work

Applications

Panzerflex VS has been specially developed and designed in order to provide a specific solution for vertical applications where small dimensions and light weight are necessary. Typical applications for Panzerflex VS control cables are mobile installations on all types of harbour cranes, container cranes, ship unloaders, stackers & reclaimers, trippers, mobile generator sets and mining & tunnelling equipment. The Panzerflex VS is especially suited for use on vertical reeling installations on mobile harbour cranes, ship-to-shore container cranes and large bridge cranes.

Construction & Characteristics PANZERFLEX® VS

- 1 Kevlar® central strainer
- 2 Very flexible tinned stranded copper conductor
- 3 EPR rubber compound insulation
- 4 Tape
- 5 Polychloroprene based compound inner sheath
- 6 Antitwisting protection of synthetic yarns
- ${\bf 7} \quad {\it Yellow polychloroprene based compound outer sheath}$

PANZERFLEX® VS					
Nominal	Max.	Net	Max. Contin.		
cross section	overall diam.	weight S	Safe Reeling Tension		
n x mm²	mm	kg/km	N		
7 x 1,5	20,4	600	2000		
12 x 1,5	26,2	980	2000		
18 x 1,5	26,4	1040	2000		
24 x 1,5	30,5	1320	2000		
30 x 1,5	34,1	1690	2000		
36 x 1,5	34,8	1750	2000		
7 x 2,5	22,9	790	2000		
12 x 2,5	30,2	1300	2000		
18 x 2,5	31,3	1500	2000		
24 x 2,5	35,8	1920	2000		
30 x 2,5	39,9	2360	2000		
36 x 2,5	40,6	2530	2000		
7 x 4	25,6	1020	2000		
12 x 4	34,4	1750	2000		
18 x 4	36,4	2050	2000		

A typical application for specially designed vertical control cables such as Panzerflex® VS.

Panzerlite®; low voltage control cable

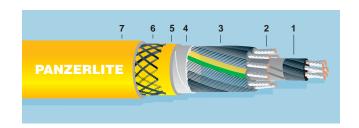
Rated and test voltages

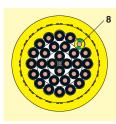
Rated voltage Uo/U 0,6/1 kV A.C.

Max voltage Um 1,2 kV A.C.

Max voltage Um 1,8 kV D.C.

Test voltage 2,5 kV A.C.


Temperature ratings


+ 90°C Maximum conductor temperature

- 30°C Minimum ambient temperature during work

Applications

Panzerlite has been specially developed and designed in order to provide a specific solution for all different types of applications where small dimensions and light weight are an absolute necessity. Typical applications for Panzerlite control cables are mobile installations on all types of harbour cranes, container cranes, ship unloaders, stackers & reclaimers, trippers, mobile generator sets and mining & tunnelling equipment.

Construction & Characteristics PANZERLITE®

- 1 Kevlar® central strainer
- 2 Extra flexible tinned stranded copper conductor
- 3 Insulation of special tecnopolymer
- 4 Tape
- 5 Inner sheath made of special polyurethane PUR
- 6 Antitwisting Kevlar® braid
- 7 Yellow outer sheath made of special polyurethane PUR
- 8 Eatrh

DIMENSIONAL DATA

PANZERLITE®						
Nominal	Max.	Net	Max. Contin.			
cross section	cross section overall diam.		Safe Reeling Tension			
n x mm²	mm	kg/km	N			
18 x 2,5	23,0	770	2000*			
37 x 2,5	32,3	1500	4000			
42 x 2,5	33,5	1650	4000			

* available on request with 4000N

Cable reeling installation using Panzerflex® power and control cables at work on a stacker.

Cordaflex[™] (SMK); low voltage control cable

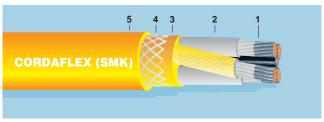
Ratings and Specifications

VDE 250, Part 814

Rating and test voltages

Rated voltage Uo/U 0,6/1 kV A.C. Max voltage Um 0,7/1,2 kV A.C. Max voltage Um 0,9/1,8 kV D.C. Test voltage kV A.C.

Temperature ratings

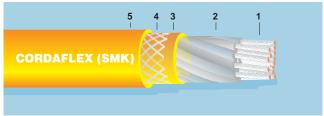

+ 90°C Maximum conductor temperature

– 35°C Minimum ambient temperature during work (flexible)

- 50°C Minimum ambient temperature during work (fixed)

Applications

The CORDAFLEXTM (SMK) is a flexible reeling cable, specifically designed to address the high mechanical stress associated with high speed operation and/or multiple cable deflection in the cable payout. Applications include monospiral reels, level wind reels, cable tenders, sheave guided systems etc. for use on container cranes, RMG's, magnet cranes, stacker/reclaimers and much more. This cable is also suited for use in mines on shuttle cars. excavators or other harsh applications. For vertical reeling applications we recommend a special design, CORDAFLEX™ (SMK)-V, which is available with an integrated central messenger increasing the maximum continuous safe reeling tension.



3 Inner sheath

4 Anti-torsion braid

5 Outer sheath

DIMENSIONAL DATA

CORDAFLEX™ (SMK)					
Nominal	Max.	Net	Max. Contin.		
cross	overall	weight	Safe Reeling Tension		
mm ²	mm	kg/km	N		
12 x 1,5	23,4	710	540		
18 x 1,5	23,3	760	810		
24 x 1,5	26,8	990	1080		
30 x 1,5	29,6	1220	1350		
36 x 1,5	29,5	1260	1620		
44 x 1,5	32,5	1530	1980		
56 x 1,5	37,9	2050	2520		
18 x 2,5	25,3	1005	1350		
24 x 2,5	29,2	1320	1800		
30 x 2,5	32,4	1660	2250		
36 x 2,5	32,3	1720	2700		
44 x 2,5	37,1	2230	3300		
56 x 2,5	43,1	2940	4200		

Note: Cordaflex (SMK) is also available in other control cable designs and in a full range of 1kV power cables

	CORDAFLEX™ (SMK)-V Reinforced	
Nominal	Max.	Net	Max. Contin.
cross	overall	weight	Safe Reeling Tension
mm ²	mm	kg/km	N
49 x 1 (20kN)	29,6	1260	3200
24 x 2,5 (20kN)	29,2	1340	3600
30 x 2,5 (20kN)	32,4	1680	4100
44 x 2,5 (20kN)	37,1	2280	5100
56 x 2,5 (20kN)	43,1	3030	6000
48 x 1,5 (50kN)	40,3	2060	4860
48 x 2,5 (50kN)	46,1	3000	6300

Basketheavyflex®; low voltage control cable

Rated and test voltages

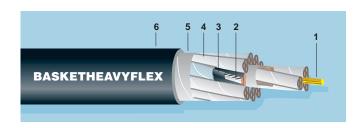
Rated voltage Uo/U 0,3/0,5 kV A.C.

Max voltage Um 0,5 kV A.C.

Max voltage Um 0,8 kV D.C.

Test voltage 2 kV A.C.

Temperature ratings


+ 90°C Maximum conductor temperature

- 20°C Minimum ambient temperature during work

Applications

BasketHeavyFlex® special, flexible control cables have been developed for use on spreader installations using baskets where there are high torsional stresses. Its particular design and the use of a rubber outer sheath makes the cable very suitable for these type of applications and gives a long life to the cable.

Typical applications for BasketHeavyFlex® control cables are spreader installations on all types of harbour cranes, container cranes, mobile harbour cranes and large bridge cranes.

Construction & Characteristics BASKETHEAVYFLEX®

- 1 Kevlar® central strainer
- 2 Extrafine tinned stranded copper conductor
- 3 EPR rubber compound insulation
- 4 Three cores laid-up with fillers and tape
- 5 Tape around the core assembly with fillers
- 6 Black CSP based compound outer sheath

DIMENSIONAL CONDUCTOR DATA

		CONDUCTOR		
Nominal cross section	Max D.C. electrical resistance at 20°C	Maximum strands diameter	Nominal conductor diameter	Nominal insulation diameter
mm ²	Ohm/km	mm	mm	mm
2,5	8,21	0,16	2,0	3,8
3,3	6,11	0,16	2,5	4,0

BASKETHEAVYFLEX © CABLE					
Nominal cross -section n x mm ²	Max. overall diam. mm	Net weight kg/km	Max. Contin. Safe Reeling Tension N		
8 x 3 x 2,5	41,0	2600	1200		
12 x 3 x 2,5	44,5	3100	1800		
14 x 3 x 2,5	50,4	3650	2100		
16 x 3 x 2,5	51,5	4100	2400		
8 x 3 x 3,3	41,0	2700	1584		
12 x 3 x 3,3	44,5	3300	2376		
14 x 3 x 3,3	50,4	3850	2772		
16 x 3 x 3,3	51,5	4300	3168		

CraneMAX; low voltage control cable

Ratings and Specifications

ASTM B-172; ASTM B-33

Rated and test voltages

Rated voltage Uo/U 0,6 kV A.C.

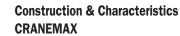
Max voltage Um 0,6 kV A.C.

Max voltage Um 0,9 kV D.C.

Test voltage 3 kV A.C.

Temperature ratings

+ 90°C Maximum conductor temperature


40°C Minimum ambient temperature during work

2-

Applications

AmerCable's Crane Max Spreader cables are designed to deliver safe trouble free performance on vertical cable reels at temperatures from -40°C to +50°C at speeds up to 250 m/min. These multi-conductor cables are especially designed for use with monospiral and level wind reels on container cranes, log handling cranes, gantry cranes, stacker/reclaimers and other similar lifting equipment. They are suitable for outdoor use in ports, shipyards, lumber mills, steel mills and mines.

Please note that this cable is designed and built according to US standards.

- 1 Conductor
- 2 Central Strength Member
- 3 Insulation
- 4 Inner sheath
- 5 Aramid reinforcement
- 6 Outer sheath
- 7 Ground

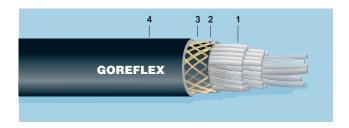
CRANEMAX					
AWG	Nominal	Max.	Net	Max. Continuous	
	cross	overall	weight	Safe Reeling	
	section	diam.		Tension	
	n x mm²	mm	kg/Km	N	
14	18 x 2,5	25,3	966	6200	
14	24 x 2,5	28,0	1057	7200	
14	37 x 2,5	32,5	1726	8000	
14	44 x 2,5	35,2	2329	8800	
12	18 x 4	27,7	1292	6600	
12	24 x 4	30,4	1629	7500	
12	37 x 4	34,3	2366	8300	
12	44 x 4	38,9	2769	9300	

A Cavotec Specimas cable reel working at ± 200 m/min on a P&H log-handling crane for Federal Paper Board, in Augusta USA.

Goreflex; low voltage control cable

Rating and test voltages

Rated voltage Uo/U 0,6 kV A.C. Test voltage 3,5 kV D.C.


Temperature ratings

+ 90°C Maximum conductor temperature

- 30°C Minimum ambient temperature during work

Applications

Goreflex low voltage control cables for spreader applications are subjected to harsh operating conditions, extreme mechanical loading and very diverse ambient conditions. Goreflex spreader cables have an acceleration of 2,5 m/sec and a speed of > 200m/min. In addition they have a high tensile strength with an extreme low elongation (> 10 specific insulation resistance) while remaining very low in weight due to their innovative design. Goreflex cables are suited to a wide range of applications and are in use at ports and terminals worldwide.

Construction & Characteristics GOREFLEX

- Flexible copper conductor
- Inner sheath
- Polymere braid
- Outer sheath

DIMENSIONAL DATA

		GOREFLEX*	
Nominal	Max.	Net	Max. Continuous
cross	overall	weight	Safe Reeling
section	diam.		Tension
n x mm ²	mm	kg/m	N
18 x 2,5	23,5	0,7	3000
30 x 2,5	27,5	1,18	4000
36 x 2,5	29,5	1,40	6500
44 x 2,5	31,8	1,70	6500

* All standard bus cables can be implemented

A typical application port for high strength Goreflex cables.

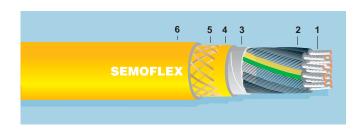
Semoflex; low voltage control cable

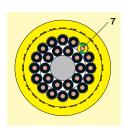
Ratings and Specifications

VDE 6510

Rating and test voltages

Rated voltage Uo/U 0,6/1 kV A.C. Test voltage 4 kV A.C.


Temperature ratings


+ 80°C Maximum conductor temperature

– 50°C Minimum ambient temperature during work

Applications

The Semoflex Drum cable is ideally suited for use in dry and damp areas, explosive environments and for various heavy duty outdoor applications such as hoisting gears, transportation systems, motorised cable reels, rail traction motors and even agricultural machinery where high mechanical stresses are involved.

Construction & Characteristics SEMOFLEX®

- 1 Flexible tinned stranded copper conductor
- 2 Semocore® conductor insulation
- 3 Tape
- 4 Polyurethane inner sheath
- 5 Textile braids
- 6 Polyurethane outer sheath
- 7 Earth

SEMOFLEX				
Nominal	Max.	Net	Max. Contin.	
cross	overall	weight	Safe Reeling	
section	diam.		Tension	
mm ²	mm	kg/km	N	
4 x 1,5	10,2	157	150	
5 x 1,5	10,8	176	190	
7 x 1,5	12,9	245	265	
12 x 1,5	18,4	337	450	
18 x 1,5	18,6	526	675	
24 x 1,5	21,3	662	900	
30 x 1,5	24,6	901	1125	
36 x 1,5	25,4	934	1350	
42 x 1,5	26,5	1.056	1575	
24 x 1,5 Bd	23,2	680	1260	
36 x 1,5 Bd	29,0	953	1890	
42 x 1,5 Bd	29,5	1.192	2200	
49 x 1,5 Bd	32,6	1.508	2580	

SEMOFLEX					
Nominal	Max.	Net	Max. Contin.		
cross	ovrall	weight	Safe Reeling		
section	diam.		Tension		
mm ²	mm	kg/km	N		
4 x 2,5	11,7	208	250		
5 x 2,5	12,7	263	315		
7 x 2,5	14,8	327	440		
12 x 2,5	20,4	533	750		
18 x 2,5	21,1	725	1125		
24 x 2,5	24,8	988	1500		
30 x 2,5	27,6	1.242	1875		
36 x 2,5	28,2	1.325	2250		
42 x 2,5	31,4	1.511	2625		
50 x 2,5	34,7	2.134	3125		
24 x 2,5 Bd	26,4	1.000	2100		
30 x 2,5 Bd	28,8	1.299	2625		
36 x 2,5 Bd	32,4	1.411	3150		
42 x 2,5 Bd	33,5	1.637	3675		
49 x 2,5 Bd	38,0	2.156	4280		
4 x 4	12,5	270	400		
5 x 4	14,3	362	500		
4 x 6	16,9	409	600		
5 x 6	17,8	511	750		
7 x 6	20,9	715	1050		

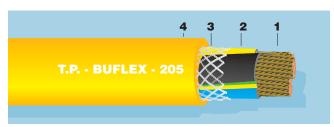
5	SEMOFLE	ΞX	
Nominal	Max.	Net N	lax. Contin.
cross	ovrall	weight S	afe Reeling
section	diam.		Tension
mm ²	mm	kg/km	N
4 x 10	19,6	633	1000
5 x 10	20,9	766	1250
7 x 10	25,8	1.044	1750
4 x 16	23,8	936	1600
5 x 16	25,5	1.173	2000
4 x 25	27,7	1.483	2500
4 x 35	30,1	2.115	3500
3 x 50 + 3 x 25/3	34,9	2.606	3750
3 x 70 + 3 x 35/3	39,0	3.060	5250
3 x 95 + 3 x 50/3	on i	request	
3 x 120 + 3 x 70/3	on i	request	
4 x 16 + 4 x 2,5	23,8	1.048	2050
19 x 2,5 + 5 x (1,5)ec	25,2	970	1375
25 x 2,5 + 5 x (1,5)ec	27,7	1.170	1750

Buflex - TP; low voltage power cable

Rating and test voltages

Rated voltage Uo/U 0,6/1 kV A.C. Max voltage Um 1,2 kV A.C. Test voltage 3,5 kV A.C.

Temperature ratings


+ 90°C Maximum conductor temperature

– 30°C Minimum ambient temperature during work

Buflex-TP cables are designed for power supply connections to all types of mobile equipment and vehicles used in quarrying, open-cast mining and other large scale civil engineering operations.

The unique Buflex® cables diameter is achieved by splitting the earth conductor and laying it in the angles formed by the assembly of the three phase conductors. This original design results in a smaller diameter than a four cable conductors cable i.e. a cable $3 \times 120 \text{ mm}^2 + 3 \times 25 \text{ mm}^2$ (earth conductors) has the same diameter as a $4 \times 95 \text{ mm}^2$ cable.

Applications

Construction & Characteristics BUFLEX-TP

- 1 Conductor
- 2 XLPE or TPR insulation
- **3** *Tape*
- 4 PUR outer sheath

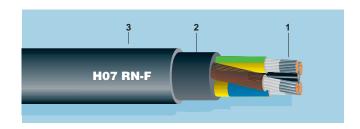
DIMENSIONAL DATA

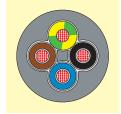
BUFLEX-TP					
Nominal	Max.	Net	Max. Contin.		
cross	overall	weight	Safe Reeling		
section	diam.		Tension		
n x mm ²	mm	kg/m	N		
3x 25+3 G6	23,0	1.044	1500		
3x 35+3 G6	26,0	1.409	2100		
3x 50+3 G10	30,0	2.006	3000		
3x 70+3 G16	35,0	2,921	4200		
3x 95+3 G16	41,0	3.650	5700		
3x 120+3 G25	44,0	4.660	7200		
3x 150 + 3 G25	50,0	5.810	9000		
3x 185 + 3 G35	54,0	7.000	11100		
3x 240+ 3 G50	62,0	9.300	14400		

Thanks to its high resistance to abrasion Buflex TP is used in many mining and tunneling applications.

AININ011

H07 RN-F; flexible low voltage rubber cable


Rating and test voltages


Rated voltage Uo/U 0,5/0,8 kV A.C. Test voltage 2,5 kV A.C.

Temperature ratings

+ 70°C Maximum conductor temperature

- 30°C Minimum ambient temperature during work

Construction & Characteristics H07 RN-F

- 1 Flexible tinned stranded copper conductor
- 2 EPR rubber compound insulation
- 3 Black polychloroprene based compound sheath

	H07	RN-F	
Number of cores x cross section mm ²	Max diameter of wires mm	Diameter mm	Weight of cable kg/km
1 x 1,50	0,26	6,5	55
1 x 2,50	0.26	7,2	70
1 x 4	0,31	8,2	100
1 x 6	0,31	9,5	125
1 x 10	0,41	11,2	195
1 x 16	0,41	12,7	280
1 x 25	0,41	14,5	405
1 x 35	0,41	16,3	525
1 x 50	0,41	18,8	705
1 x 70	0,51	21,0	970
1 x 95	0,51	24,0	1265
1 x 120	0,51	26,0	1565
1 x 150	0,51	29,0	1940
1 x 185	0,51	31,0	2335
1 x 240	0,51	34,3	2975
1 x 300	0,51	38,0	3655
1 x 400	0,51	42,0	4685
1 x 500	0,51	46,5	5855
2 x 1,0	0,21	9,3	90
2 x 1,50	0,26	10,2	130
2 x 2,50	0,26	12,0	185
2 x 4	0,31	13,5	255
2 x 6	0,31	16,0	330
2 x 10	0,41	21,3	585
2 x 16	0,41	24,3	835
2 x 25	0,41	28,3	1220
3G1,0	0,21	10,1	120
3G1,5	0,26	11,1	155
3G2,5	0,26	13,0	255
3G4	0,31	14,5	310
3G6	0,31	17,2	410
3G10	0,41	22,8	720
3G16	0,41	26,0	1040
3G25	0,41	30,3	1525

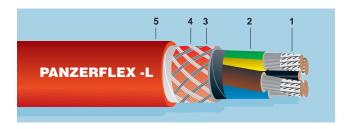
	H07 RN-F								
Number of cores x cross section mm ²	Max diameter of wires mm	Diameter mm	Weight of cable						
			kg/km						
3G35	0,41	33,8	1955						
3G50	0,41	39,3	2635						
3G70	0,51	44,3	3555						
3G95	0,51	49,0	4695						
3G120	0,51	53,3	5745						
3G150	0,51	60,0	7175						
3G185	0,51	65,0	8600						
3G240	0,51	73,3	11030						
3G300	0,51	81,0	13750						
4G1,0	0,21	11,1	150						
4G1,5	0,26	12,0	190						
4G2,5	0,26	14,0	280						
4G4	0,31	16,3	390						
4G6	0,31	19,3	520						
4G10	0,41	24,8	895						
4G16	0,41	28,3	1290						
4G25	0,41	33,5	1930						
4G35	0,41	37,5	2480						
4G50	0,41	43,3	3335						
4G70	0,51	48,8	4545						
4G95	0,51	54,8	6040						
4G120	0,51	59,25	7335						
4G150	0,51	66,3	9175						
4G185	0,51	71,8	11035						
4G240	0,51	81,5	14150						
4G300	0,51	90,0	17650						
5G1,0	0,21	12,0	185						
5G1,5	0,26	13,3	235						
5G2,5	0,26	15,3	340						
5G4	0,31	17,8	485						
5G6	0,31	21,3	640						
5G10	0,41	27,3	1095						
5G16	0,41	31,3	1595						
5G25	0,41	37,0	2385						

Panzerflex®-L; medium voltage power cable

Ratings and Specifications

VDE 0250 part 814

Rated and test voltages


Rated voltage Uo/U	3,6/6	kV A.C.
Max voltage Um	7,2	kV A.C.
Test voltage	11	kV A.C.
Rated voltage Uo/U	6/10	kV A.C.
Max voltage Um	12	kV A.C.
Test voltage	17	kV A.C.
Rated voltage Uo/U	8,7/15	kV A.C.
Max voltage Um	18	kV A.C.
Test voltage	24	kV A.C.
Rated voltage Uo/U	12/20	kV A.C.
Max voltage Um	24	kV A.C.
Test voltage	32	kV A.C.

Temperature ratings

- + 90°C Maximum conductor temperature
- 25°C Minimum ambient temperature during work

Applications

The new Panzerflex®-L* medium voltage cable has been developed and designed to meet the ever increasing demanding needs of the market in terms of reliability, speed and performance. The increase of the lengths, speed and acceleration requires more robust and at the same time lighter cables, whilst the smaller dimension can result in savings on equipment costs, transport and operating space. Typical applications for this cable are mobile installations on all types of harbour cranes, container cranes, ship unloaders, stackers & reclaimers, trippers, mobile generator sets and mining & tunnelling equipment.

Construction & Characteristics PANZERFLEX® - L

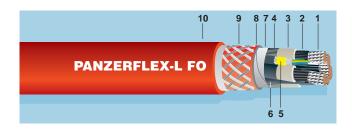
- 1 Phase conductor
- 2 Earth conductor
- 3 PCP inner sheath
- 4 Textile Anti-twisting braid
- 5 PCP outer sheath

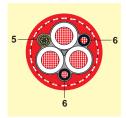
	PANZERFLEX®-L										
		ated voltage 6 KV		A.C. Rated voltage		ted voltage A.C 5 kV		ted voltage) kV			
Nominal	Max.	Net	Max.	Net	Max.	Net	Max.	Net	Max. Continuous		
cross	overall	weight	overall	weight	overall	weight	overall	weight	Safe Reeling		
section	diam.		diam.		diam.		diam.		Tension		
n x mm ²	mm ²	kg/km	mm ²	kg/km	mm ²	kg/km	mm²	kg/km	N		
3 x 25 + 3 x 10	45,90	2742	47,6	2915	52,4	3377	58,0	3989	1500		
3 x 35 + 3 x 10	48,90	3317	50,6	3484	56,6	4124	61,0	4638	2100		
3 x 50 + 3 x 10	51,70	3845	54,7	4166	59,5	4697	63,9	5236	3000		
3 x 70 + 3 x 16	57,00	5024	58,9	5220	63,7	5807	69,7	6610	4200		
3 x 95 + 3 x 16	61,00	6041	62,8	6250	69,3	7101	73,7	7703	5700		
3 x 120 + 3 x 25	67,00	7588	68,8	7819	73,7	8480	79,5	9370	7200		
3 x 150 + 3 x 25	71,20	8793	73,0	9033	-	-	-	-	-		
3 x 185 + 3 x 35	74,30	10078	77,4	10574	-	-	-	-	-		

st Old version of PANZERFLEX is available on request.

Panzerflex®-L FO; medium voltage power cable with optical fibre

Rating and test voltages


Rated voltage Uo/U	6/10	kV A.C.
Max voltage Um	12	kV A.C.
Test voltage	17	kV A.C.
Rated voltage Uo/U	8,7/15	kV A.C.
Max voltage Um	18	kV A.C.
Test voltage	24	kV A.C.
Rated voltage Uo/U	12/20	kV A.C.
Max voltage Um	24	kV A.C.
Test voltage	32	kV A.C.


Temperature ratings

- + 90°C Maximum conductor temperature
- 20°C Minimum ambient temperature during work

Applications

Panzerflex®-L FO medium voltage flexible power cables with optical fibres have been developed for use on moving installations where there are high torsional and tensile stresses ambient conditions are harsh and where there is a need to transmit data and signals through optical fibres. Typical applications for Panzerflex®-L FO cables are reeling installations on ship-to-shore container cranes, ship-unloaders, stacker & reclaimers, heavy mining & tunnelling equipment and other large electrical machines.

Construction & Characteristics PANZERFLEX®- L FO

- 1 Flexible tinned stranded copper conductor
- 2 Semiconducting tape or layer
- 3 EPR core insulation
- 4 Semiconducting layer
- 5 Fibre optic element*
- **6** Ground conductor
- 7 Tape
- 8 PCP Inner sheath
- 9 Textile braid
- 10 PCP outer sheath

DIMENSIONAL DATA

PANZERFLEX®-L FO										
		ed voltage KV		ed voltage 5 KV		ed voltage kV				
Nominal cross section mm ²	Max. overall diam. mm	Net weight kg/km	Max. overall diam. mm	Net weight kg/km	Max. overall diam. mm	Net weight kg/km	Max. Continuous Safe Reeling Tension N			
3 x 25 + 2 x 16 + 6F0	50,0	2975	52,4	3365	58,0	4138	1500			
3 x 35 + 2 x 16 + 6F0	50,6	3472	56,6	4112	61,0	4803	2100			
3 x 50 + 2 x 16 + 6F0	54,7	4164	59,5	4695	63,9	5411	3000			
3 x 70 + 2 x 25 + 6F0	58,9	5190	63,7	5777	69,7	6814	4200			
3 x 95 + 2 x 25 + 6F0	62,8	6219	69,3	7070	-	-	5700			
3 x 120 + 2 x 35 + 6F0	68,8	7755	73,7	8378	-	-	7200			
3 x 150 + 2 x 35 + 6F0	73,0	8969	79,2	9882	-	-	9000			
3 x 185 + 2 x 50 + 6F0	77,4	10343	82,3	11091	-	-	11100			

^{*} Fibre optic elements are available in sizes 62,5/125 and 50/125

Note: attenuation on PANZERFLEX®-L FO complete at 850 nm: $\leq 5 \ dB/km$

Panzerflat®; medium voltage flat reeling cable

Rating and test voltages

Rated voltage Uo/U 3 kV A.C.

Max voltage Um 7,2 kV A.C.

Test voltage 11 kV A.C.

Rated voltage Uo/U 6 kV A.C.

Max voltage Um 12 kV A.C.

Test voltage 17 kV A.C.

Temperature ratings

- + 90°C Maximum conductor temperature
- 20°C Minimum ambient temperature during work

Applications

Panzerflat medium voltage flat flexible power and control cables have been especially designed for festooning and horizontal applications on mobile installations. Typical applications for Panzerflat medium voltage are harbour cranes, container cranes, festooning installations, ship-unloaders, stackers and reclaimers, large mining and tunnelling equipment and reeling installations on all types of bridge cranes.

Construction & Characteristics PANZERFLAT

- 1 Tinned copper wire conductor
- 2 Semi-conductive layer
- 3 EPR compound insulation
- 4 Tinned copper braided screen on power cores
- 5 Rubber outer sheath

DIMENSIONAL DATA

	PANZERFLAT										
Nominal	Nominal	Max DC	Max.	Net	Max. Continuous						
cross	conductor	elec. resistence	e overall	weight	Safe Reeling						
section	diameter	at 20°C	dimension*		Tension						
n x mm ²	mm²	Ohm/km	mm	kg/km	N						
		3	κV								
4 x 35	12,9	0,565	75 x 26	3925	2100						
4 x 50	14,2	0,393	80 x 28	5678	3000						
4 x 70	16,1	0,277	88 x 30	5860	4200						
		6 I	κV								
4 x 35	16,4	0,565	84 x 29	4777	2100						
4 x 50	17,7	0,393	86 x 30	5290	3000						
4 x 70	19,6	0,277	99 x 33,5	6975	4200						
4 x 95	21,4	0,210	104 x 40	8241	5700						
	6 kV + FO										
4 x 35 + 6F0	16,4	0,565	94 x 29	6020	2100						
4 x 50 + 6F0	17,7	0,393	98,5 x 33	7090	3000						

Note: the 6FO type has a 62,5/125 fibre optic element.

^{*} Maximum overall dimensions are calculated within a tolerance of ± 2.5

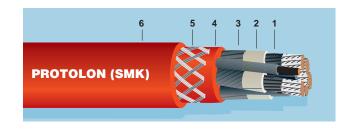
Protolon™ (SMK); medium voltage power cable

Ratings and Specifications

VDE 250, Part 813 VDE 0168/0118

Rating and test voltages

Rated voltage Uo/U 3,6/6 kV A.C. Max voltage Um 4,2/7,2 kV A.C. Test voltage kV A.C. Rated voltage Uo/U 6/10 kV A.C. 7,2/12 kV A.C. Max voltage Um Test voltage kV A.C. Rated voltage Uo/U 8,7/15 kV A.C. Max voltage Um 10,4/18 kV A.C. Test voltage kV A.C. 24 kV A.C. Rated voltage Uo/U 12/20 Max voltage Um 13,9/24 kV A.C. Test voltage 29 kV A.C.


Applications

The PROTOLONTM (SMK) is a medium voltage reeling cable, specifically designed to withstand extremely high mechanical stresses associated with high travel speed, dynamic tensile loads or torsional stresses. Applications include container cranes, shiploaders, stacker/reclaimers, RMG's, log handling cranes and much more. PROTOLONTM (SMK) is also suitable for mining applications like bucket wheel excavators or tunneling equipment. If application parameters exceed specified values in the technical tables, please consult your local Cavotec office.

Temperature ratings

+ 90°C Maximum conductor temperature

- 35°C Minimum ambient temperature during work (flexible)
 - 50°C Minimum ambient temperature during work (fixed)

Construction & Characteristics PROTOLON (SMK)

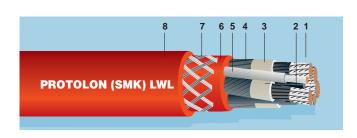
- 1 Conductor
- 2 Insulation
- 3 Outer semiconductive layer
- 4 Inner sheath
- 5 Anti-torsion braid
- 6 Outer sheath Sandwich system

	PROTOLON™ (SMK)										
		A.C. Rated voltage A.C. Rated vo						ted voltage 20 kV			
Nominal cross section	Max. overall diam.	Net weight	Max. overall diam.	Net weight	Max. overall diam.	Net weight	Max. overall diam.	net weight	Max. Contin. Safe Reeling Tension		
mm ²	mm	kg/km	mm	kg/km	mm	kg/km	mm	kg/km	N		
3 x 25 + 3 x 25/3	41,4	2380	41,4	2380	44,8	2670	47,8	2940	1500		
3 x 35 + 3 x 25/3	43,9	2880	43,9	2880	47,4	3130	50,4	3420	2100		
3 x 50 + 3 x 25/3	47,4	3480	47,4	3480	50,9	3810	55,8	4300	3000		
3 x 70 + 3 x 50/3	53,4	4740	53,4	4740	56,9	4990	59,9	5300	4200		
3 x 95 + 3 x 50/3	57,7	5660	57,7	5660	61,2	6070	65,6	6660	5700		
3 x 120 + 3 x 70/3	61,2	6830	61,2	6830	66,1	7480	69,1	7870	7200		
3 x 150 + 3 x 70/3	66,5	8180	66,5	8180	69,9	8630	73	9060	9000		
3 x 185 + 3 x 95/3	70,4	9660	70,4	9660	73,8	10140	78,3	10850	11000		

Protolon[™] (SMK) LWL; medium voltage power cable with optical fibre

Ratings and Specifications

VDE 0250 part 813 VDE 0168/0118


Rating and test voltages

Rated voltage Uo/U	3,6/6	kV A.C.
Max voltage Um	4,2/7,2	kV A.C.
Test voltage	11	kV A.C.
Rated voltage Uo/U	6/10	kV A.C.
Max voltage Um	7,2/12	kV A.C.
Test voltage	17	kV A.C.
Rated voltage Uo/U	8,7/15	kV A.C.
Max voltage Um	10,4/18	kV A.C.
Test voltage	24	kV A.C.
Rated voltage Uo/U	12/20	kV A.C.
Max voltage Um	13,9/24	kV A.C.
Test voltage	29	kV A.C.

Temperature ratings

+ 90°C Maximum conductor temperature

- 35°C Minimum ambient temperature during work (flexible)
 - 50°C Minimum ambient temperature during work (fixed)

Applications

The PROTOLONTM (SMK) LWL is a medium voltage reeling cable, specifically designed to withstand extremely high mechanical stresses associated with high travel speed, dynamic tensile loads or torsional stresses. PROTOLONTM (SMK) LWL features an integrated fiber optic element consisting of 6 or 18 optical fibers for transmission of control signals, voice, video and other data signals. Applications include container cranes, shiploaders, stacker/reclaimers, RMG's, log handling cranes and much more. PROTOLONTM (SMK) LWL is also suitable for mining applications like bucket wheel excavators and tunneling equipment. If PROTOLONTM (SMK) LWL cables are damaged they are easily repaired by qualified personnel, so it can be used again within its nominal parameters without restrictions.

If application parameters exceed specified values in the technical tables, please consult your local Cavotec office.

Construction & Characteristics PROTOLON (SMK) LWL

- 1 Conductor
- 2 EPR cradle separator
- 3 Insulation
- 4 Outer semiconductive layer
- 5 Fibre-optic element*
- 6 Inner sheath
- 7 Anti-torsion braid
- ${\it 8} \quad {\it Outer sheath Sandwich system}$

PROTOLON™ (SMK) LWL										
		ated voltage '6 kV		A.C. Rated voltage A.C. Rated voltage 6/10 kV 8,7/15 kV			A.C. Ra 12/2	ted voltage !O kV		
Nominal cross section mm ²	Max. overall diam. mm	Net weight kg/km	Max. overall diam. mm	Net weight kg/km	Max. overall diam. mm	Net weight kg/km	Max. overall diam. mm	Net weight kg/km	Max. Contin. Safe Reeling Tension N	
3 x 25 + 2 x 25/2 + 6 LWL	43,7	2610	43,7	2610	46,5	2860	49,6	3150	1500	
3 x 35 + 2 x 25/2 + 6 LWL	45,7	3010	45,7	3010	49,1	3330	54,1	3810	2100	
3 x 50 + 2 x 25/2 + 6 LWL	49,1	3680	49,1	3680	54,5	4210	58,1	4610	3000	
3 x 70 + 2 x 35/2 + 6 LWL	55,1	4810	55,1	4810	59,2	5270	62,2	5640	4200	
3 x 95 + 2 x 50/2 + 6 LWL	60,1	6000	60,1	6000	64,9	6640	68	7050	5700	
3 x 120 + 2 x 70/2 + 6 LWL	64,9	7410	64,9	7410	68,4	7870	72	8360	7200	
3 x 150 + 2 x 70/2 + 6 LWL	68,8	8570	68,8	8570	72,8	9130	77,3	9840	9000	
3 x 185 + 2 x 95/2 + 6 LWL	73,3	10160	73,3	10160	78,1	10920	81,2	11410	11100	

^{*} Fibre optic elements are available in size 62,5/125µ, 50/125µ and E9/125µ

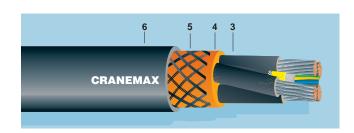
CraneMAX; medium voltage power cable

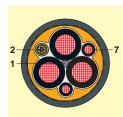
Ratings and Specifications

ASTM B-172; ASTM B-33

Rating and test voltages

Temperature ratings


+ 90°C Maximum conductor temperature


– 40°C Minimum ambient temperature during work

Applications

AmerCable's High Speed Reeling Cables are designed to provide safe and optimum performance on cable reels operating worldwide at temperatures from -40°C to +50°C at speeds up to 305 m./min. These three conductor cables are specially designed for use with monospiral, level wind and random wind reels on gantry cranes, container cranes, log handling cranes, stacker/reclaimers and other similar lifting equipment. They are suitable for outdoor use in ports, shipyards, lumber mills, steel mills and mines.

Please note that this cable is designed and built according to US standards.

Construction & Characteristics CRANEMAX

- 1 Filler
- 2 Conductor
- 3 Insulation & Extruded conductive shield
- ! Inner jacket
- 5 Aramid reinforcement
- 6 Outer jacket
- 7 Ground (earth)
- 8 Ground check

	CRANEMAX										
			ed voltage /6 kV	A.C. Rate 6,1/1	ed voltage LO kV		A.C. Rated voltage 10,1/15 kV				
AWG	Nominal cross section	Max. overall diam.	Net weight	Max. overall diam.	Net weight	Max. overall diam.	Net weight	Max. Continuous Safe Reeling Tension			
	mm ²	mm	kg/km	mm	kg/km	mm	kg/km	N			
4	21,5	38,9	2149	40,5	2223	45,6	2609	3780			
2	33,6	42,4	2707	44,0	2838	49,0	3256	3780			
1	42,4	45,0	3144	46,6	3283	51,7	3720	4670			
1/0	53,5	47,7	3653	49,3	3799	55,6	4512	5560			
2/0	67,4	50,9	4360	52,5	4444	58,7	5202	6450			
3/0	85	53,8	5315	55,4	5483	61,5	6029	7339			
4/0	107,2	57,6	6330	59,2	6522	-	_	8229			

CraneMAX FO; medium voltage power cable with optical fibre

Ratings and Specifications

ASTM B-172; ASTM B-33

Rating and test voltages

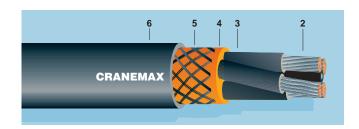
Rated voltage Uo/U 1,2/2,1 kV to 9,0/15 kV A.C.

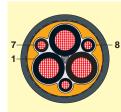
Max voltage Um 1,2/2,1 kV to 9,0/15 kV A.C.

Max voltage Um 1,5/3,2 kV to 11,3/22,5 kV D.C.

Test voltage 18 to 27 kV A.C.

Temperature ratings


+ 90°C Maximum conductor temperature


40°C Minimum ambient temperature during work

Applications

AmerCable's High Speed Reeling Cables are designed to provide safe, optimum performance on cable reelers operating worldwide at temperatures from -40°C to +50°C at speeds up to 260 m/min. These cables are for the combined transmission of power and data and are specially designed for use with monospiral, level wind and random wind reelers on gantry cranes, container cranes, log handling cranes, stacker/reclaimers and other similar lifting equipment. They are suitable for outdoor use in ports, shipyards, lumber mills, steel mills and mines.

Please note that this cable is designed and built according to US standards.

Construction & Characteristics CRANEMAX

- 1 Filler
- 2 Fiber optic element
- 3 Insulation & Extruded conductive shield
- 4 Inner jacket
- **5** Aramid reinforcement
- 6 Outer jacket
- 7 Ground (earth)

	CRANEMAX FO										
			ed voltage '6 kV	A.C. Rate 6,1/2	ed voltage LO kV		ed voltage '15 kV				
AWG	Nominal cross section	Max. overall diam.	Net weight	Max. overall diam.	Net weight	Max. overall diam.	Net weight	Max. Continuous Safe Reeling Tension			
	mm ²	mm	kg/km	mm	kg/km	mm	kg/km	N			
4	21,5	38,9	2127	40,5	2201	45,6	2586	3780			
2	33,6	42,4	2685	44,0	2816	49,0	3234	3780			
1	42,4	45,0	3122	46,6	3261	51,7	3698	4670			
1/0	53,5	47,7	3631	49,3	3777	55,6	4490	5560			
2/0	67,4	50,9	4289	52,5	4421	58,7	5181	6450			
3/0	85	53,8	5295	55,4	5406	61,5	6007	7339			
4/0	107,2	57,6	6305	59,2	6501	_	_	8229			

^{*} Fibre optic elements are available in size 62,5/125. 6 fiber bundle is standard. 12 & 18 fiber bundles available on special order

Comparison chart Metric cross-section – AWG* numbers

To ensure accurate translation between metric cross-sections and American Wire Gauge (AWG) numbers we have included this comparison chart. We do advise however to contact your local Cavotec office in the case of any uncertainty.

Metric nominal cross-section		AWG
mm ²	mm ²	number
0.75	0.653	19
	0.823	18
	1.04	17
	1.31	16
1.5	1.65	15
	2.08	14
2.5	2.62	13
	3.31	12
4.0	4.17	11
	5.26	10
6.0	6.63	9
	8.37	8
	10.55	7
10.0	13.30	6 5
16.0	16.77	
	21.15	4
25.0	26.27	3
	33.63	2
35.0	42.41	1
	53.48	1/0
50	67.43	2/0
70.0	85.03	3/0
95.0	107.20	4/0
120.0	126.64	250 MCM
150.0	152.00	300 MCM
	177.35	350 MCM
185.00	202.71	400 MCM
240.0	253.35	500 MCM
300.0	380.00	750 MCM
400.0		
500.0	506.71	1000 MCM
625.0		

^{*}AWG American Wire Gauge

